

LESS: Label-Efficient and Single-Stage Referring 3D Segmentation

Xuexun Liu^{1*} Xiaoxu Xu^{1*} Jinlong Li^{2*} Qiudan Zhang¹ Xu Wang^{1†} Nicu Sebe² Lin Ma³

¹Shenzhen University, ²University of Trento, ³Meituan Inc.

Problem

- Previous referring 3D segmentation methods typically adopt segmentation-then-matching paradigm or utilize a powerful instance segmentation pre-train model as their backbone. These approaches all require both semantic and instance supervision signal.
- For previous segmentation-then-matching methods, target objects may be left out in the pre-segmentation stage because the network fails to focus on the objects that are more essential to the referring task.
- 3D scene is large and complex while the referred object is small. It is difficult to directly localize and segment target objects only with binary mask.

Contribution

- We propose a new Referring 3D Segmentation method, which directly performs referring 3D segmentation at a single stage to bridge the gap between detection and matching under the supervision of binary mask.
- To enhance cross-modal ability, we utilize a Point-Word Cross-Modal Alignment module and Query-Sentence Alignment module from coarse to fined.
- To reduce interference caused by multiple objects and backgrounds, we propose an area regularization loss and the point-to-point contrastive loss from coarse to fined.

Method

- Area Regularization Loss: Minimize the output probability of each point and promotes the network to predict a smallest mask.
- Point-to-Point Contrastive Loss: Pull the points from the described object together and push away the rest points.

$$\mathcal{L}_{area} = \frac{1}{N} \sum_{i=1}^{N} \sigma(\widehat{M}_i) \quad \mathcal{L}_{p2p} = -\frac{1}{|\mathcal{P}|} \sum_{i=1}^{|\mathcal{P}|} \frac{\exp(P_i \cdot P_{avg}/\tau)}{\exp(P_i \cdot P_{avg}/\tau) + \sum_{j=1}^{|\mathcal{N}|} \exp(P_i \cdot N_j/\tau)}$$

Time Consumption

Method	Inference (Whole Dataset) (min)	Inference (Per Scan) (ms)	Training (Stage 1) (h)	Training (Stage 2) (h)	Training (All) (h)
TGNN	27.98	176.57	156.02	8.53	164.55
X-RefSeg	20.00	126.23	156.02	7.59	163.61
Ours	7.09	44.76	-	-	40.89

Benchmark Results

■ Comparison on Scanrefer dataset.

	Method	Backbone	Label Effort‡	Supervision	mIoU	Acc@0.25	Acc@0.
Two Stage	TGNN TGNN X-RefSeg X-RefSeg	GRU BERT GRU BERT	> 20 min	Ins.+ Sem. Ins.+ Sem. Ins.+ Sem. Ins.+ Sem.	26.10 27.80 29.77 29.94	35.00 37.50 39.85 40.33	29.00 31.40 33.52 33.77
Single Stage	LESS (ours) LESS (ours) LESS (ours)	GRU BERT RoBERTa	$< 2 \min$	Mask Mask Mask	32.19 32.44 33.74	51.00 51.41 53.23	26.41 29.02 29.88

[‡] The evaluate of label effort is base on a single sample.

Ablation and Visualization

	PWCA	QSA	mIoU	A@25	A@50		\mathcal{L}_{area}	\mathcal{L}_{p2p}	mIoU	A@25	A@50
a) b) c)	√		33.44	52.73	27.20 28.92 29.88	(b)	√		31.04	40.85 49.61 53.23	24.72

