LESS: Label-Efficient and Single-Stage Referring 3D Segmentation Xuexun Liu^{1*} Xiaoxu Xu^{1*} Jinlong Li^{2*} Qiudan Zhang¹ Xu Wang^{1†} Nicu Sebe² Lin Ma³ ¹Shenzhen University, ²University of Trento, ³Meituan Inc. #### Problem - Previous referring 3D segmentation methods typically adopt segmentation-then-matching paradigm or utilize a powerful instance segmentation pre-train model as their backbone. These approaches all require both semantic and instance supervision signal. - For previous segmentation-then-matching methods, target objects may be left out in the pre-segmentation stage because the network fails to focus on the objects that are more essential to the referring task. - 3D scene is large and complex while the referred object is small. It is difficult to directly localize and segment target objects only with binary mask. ## Contribution - We propose a new Referring 3D Segmentation method, which directly performs referring 3D segmentation at a single stage to bridge the gap between detection and matching under the supervision of binary mask. - To enhance cross-modal ability, we utilize a Point-Word Cross-Modal Alignment module and Query-Sentence Alignment module from coarse to fined. - To reduce interference caused by multiple objects and backgrounds, we propose an area regularization loss and the point-to-point contrastive loss from coarse to fined. ### Method - Area Regularization Loss: Minimize the output probability of each point and promotes the network to predict a smallest mask. - Point-to-Point Contrastive Loss: Pull the points from the described object together and push away the rest points. $$\mathcal{L}_{area} = \frac{1}{N} \sum_{i=1}^{N} \sigma(\widehat{M}_i) \quad \mathcal{L}_{p2p} = -\frac{1}{|\mathcal{P}|} \sum_{i=1}^{|\mathcal{P}|} \frac{\exp(P_i \cdot P_{avg}/\tau)}{\exp(P_i \cdot P_{avg}/\tau) + \sum_{j=1}^{|\mathcal{N}|} \exp(P_i \cdot N_j/\tau)}$$ ## Time Consumption | Method | Inference
(Whole Dataset) (min) | Inference
(Per Scan) (ms) | Training (Stage 1) (h) | Training (Stage 2) (h) | Training (All) (h) | |----------|------------------------------------|------------------------------|------------------------|------------------------|--------------------| | TGNN | 27.98 | 176.57 | 156.02 | 8.53 | 164.55 | | X-RefSeg | 20.00 | 126.23 | 156.02 | 7.59 | 163.61 | | Ours | 7.09 | 44.76 | - | - | 40.89 | ### Benchmark Results #### ■ Comparison on Scanrefer dataset. | | Method | Backbone | Label Effort‡ | Supervision | mIoU | Acc@0.25 | Acc@0. | |-----------------|---|----------------------------|---------------|---|----------------------------------|----------------------------------|----------------------------------| | Two
Stage | TGNN
TGNN
X-RefSeg
X-RefSeg | GRU
BERT
GRU
BERT | > 20 min | Ins.+ Sem. Ins.+ Sem. Ins.+ Sem. Ins.+ Sem. | 26.10
27.80
29.77
29.94 | 35.00
37.50
39.85
40.33 | 29.00
31.40
33.52
33.77 | | Single
Stage | LESS (ours)
LESS (ours)
LESS (ours) | GRU
BERT
RoBERTa | $< 2 \min$ | Mask
Mask
Mask | 32.19
32.44
33.74 | 51.00
51.41
53.23 | 26.41
29.02
29.88 | [‡] The evaluate of label effort is base on a single sample. ### Ablation and Visualization | | PWCA | QSA | mIoU | A@25 | A@50 | | \mathcal{L}_{area} | \mathcal{L}_{p2p} | mIoU | A@25 | A@50 | |----------------|----------|-----|-------|-------|--------------------------------|-----|----------------------|---------------------|-------|--------------------------------|-------| | a)
b)
c) | √ | | 33.44 | 52.73 | 27.20
28.92
29.88 | (b) | √ | | 31.04 | 40.85
49.61
53.23 | 24.72 |